Cal/OSHA, DOT HAZMAT, EEOC, EPA, HAZWOPER, HIPAA, IATA, IMDG, TDG, MSHA, OSHA, and Canada OHS Regulations and Safety Online Training ## **Since 2008** This document is provided as a training aid and may not reflect current laws and regulations. Be sure and consult with the appropriate governing agencies or publication providers listed in the "Resources" section of our website. www.ComplianceTrainingOnline.com This content is from the eCFR and is authoritative but unofficial. #### Title 29 —Labor Subtitle B —Regulations Relating to Labor ## Chapter XVII - Occupational Safety and Health Administration, Department of Labor #### Part 1926 - Safety and Health Regulations for Construction **Authority:** 40 U.S.C. 3704; 29 U.S.C. 653, 655, and 657; and Secretary of Labor's Order No. 12–71 (36 FR 8754), 8–76 (41 FR 25059), 9–83 (48 FR 35736), 1–90 (55 FR 9033), 6–96 (62 FR 111), 3–2000 (65 FR 50017), 5–2002 (67 FR 65008), 5–2007 (72 FR 31159), 4–2010 (75 FR 55355), 1–2012 (77 FR 3912), or 8–2020 (85 FR 58393), as applicable; and 29 CFR part 1911, unless otherwise noted Sections 1926.58, 1926.59, 1926.60, and 1926.65 also issued under 5 U.S.C. 553 and 29 CFR part 1911. Section 1926.61 also issued under 49 U.S.C. 1801–1819 and 5 U.S.C. 553. See *Part 1926 for more* **Source:** 44 FR 8577, Feb. 9, 1979; 44 FR 20940, Apr. 6, 1979, unless otherwise noted. ## **Subpart E** Personal Protective and Life Saving Equipment § 1926.95 Criteria for personal protective equipment. § 1926.96 Occupational foot protection. § 1926.97 Electrical protective equipment. § 1926.98 [Reserved] § 1926.100 Head protection. § 1926.101 Hearing protection. § 1926.102 Eye and face protection. § 1926.103 Respiratory protection. § 1926.104 Safety belts, lifelines, and lanyards. § 1926.105 Safety nets. § 1926.106 Working over or near water. § **1926.107** Definitions applicable to this subpart. **Editorial Notes:** 1. At 44 FR 8577, Feb. 9, 1979, and corrected at 44 FR 20940, Apr. 6, 1979, OSHA reprinted without change the entire text of 29 CFR part 1926 together with certain General Industry Occupational Safety and Health Standards contained in 29 CFR part 1910, which have been identified as also applicable to construction work. This republication developed a single set of OSHA regulations for both labor and management forces within the construction industry. 2. Nomenclature changes to part 1926 appear at 84 FR 21597, May 14, 2019. ## Subpart E—Personal Protective and Life Saving Equipment **Authority:** 40 U.S.C. 3701 et seq.; 29 U.S.C. 653, 655, 657; Secretary of Labor's Order No. 12–71 (36 FR 8754), 8–76 (41 FR 25059), 9–83 (48 FR 35736), 1–90 (55 FR 9033), 6–96 (62 FR 111), 5–2002 (67 FR 65008), 5–2007 (72 FR 31160), 4–2010 (75 FR 55355), or 1–2012 (77 FR 3912), as applicable; and 29 CFR part 1911. ## § 1926.95 Criteria for personal protective equipment. - (a) Application. Protective equipment, including personal protective equipment for eyes, face, head, and extremities, protective clothing, respiratory devices, and protective shields and barriers, shall be provided, used, and maintained in a sanitary and reliable condition wherever it is necessary by reason of hazards of processes or environment, chemical hazards, radiological hazards, or mechanical irritants encountered in a manner capable of causing injury or impairment in the function of any part of the body through absorption, inhalation or physical contact. - (b) *Employee-owned equipment*. Where employees provide their own protective equipment, the employer shall be responsible to assure its adequacy, including proper maintenance, and sanitation of such equipment. - (c) **Design**. All personal protective equipment shall be of safe design and construction for the work to be performed. - (d) Payment for protective equipment. - (1) Except as provided by paragraphs (d)(2) through (d)(6) of this section, the protective equipment, including personal protective equipment (PPE), used to comply with this part, shall be provided by the employer at no cost to employees. - (2) The employer is not required to pay for non-specialty safety-toe protective footwear (including steel-toe shoes or steel-toe boots) and non-specialty prescription safety eyewear, provided that the employer permits such items to be worn off the job-site. - (3) When the employer provides metatarsal guards and allows the employee, at his or her request, to use shoes or boots with built-in metatarsal protection, the employer is not required to reimburse the employee for the shoes or boots. - (4) The employer is not required to pay for: - (i) Everyday clothing, such as long-sleeve shirts, long pants, street shoes, and normal work boots; or - (ii) Ordinary clothing, skin creams, or other items, used solely for protection from weather, such as winter coats, jackets, gloves, parkas, rubber boots, hats, raincoats, ordinary sunglasses, and sunscreen. - (5) The employer must pay for replacement PPE, except when the employee has lost or intentionally damaged the PPE. - (6) Where an employee provides adequate protective equipment he or she owns pursuant to paragraph (b) of this section, the employer may allow the employee to use it and is not required to reimburse the employee for that equipment. The employer shall not require an employee to provide or pay for his or her own PPE, unless the PPE is excepted by paragraphs (d)(2) through (d)(5) of this section. - (7) This section shall become effective on February 13, 2008. Employers must implement the PPE payment requirements no later than May 15, 2008. Note to § 1926.95(d): When the provisions of another OSHA standard specify whether or not the employer must pay for specific equipment, the payment provisions of that standard shall prevail. ## § 1926.96 Occupational foot protection. Safety-toe footwear for employees shall meet the requirements and specifications in American National Standard for Men's Safety-Toe Footwear, Z41.1–1967. [58 FR 35152, June 30, 1993] ## § 1926.97 Electrical protective equipment. - (a) Design requirements for specific types of electrical protective equipment. Rubber insulating blankets, rubber insulating matting, rubber insulating covers, rubber insulating line hose, rubber insulating gloves, and rubber insulating sleeves shall meet the following requirements: - (1) Manufacture and marking of rubber insulating equipment. - (i) Blankets, gloves, and sleeves shall be produced by a seamless process. - (ii) Each item shall be clearly marked as follows: - (A) Class 00 equipment shall be marked Class 00. - (B) Class 0 equipment shall be marked Class 0. - (C) Class 1 equipment shall be marked Class 1. - (D) Class 2 equipment shall be marked Class 2. - (E) Class 3 equipment shall be marked Class 3. - (F) Class 4 equipment shall be marked Class 4. - (G) Nonozone-resistant equipment shall be marked Type I. - (H) Ozone-resistant equipment shall be marked Type II. - (I) Other relevant markings, such as the manufacturer's identification and the size of the equipment, may also be provided. - (iii) Markings shall be nonconducting and shall be applied in such a manner as not to impair the insulating qualities of the equipment. - (iv) Markings on gloves shall be confined to the cuff portion of the glove. - (2) Electrical requirements. - (i) Equipment shall be capable of withstanding the ac proof-test voltage specified in Table E-1 or the dc proof-test voltage specified in Table E-2. - (A) The proof test shall reliably indicate that the equipment can withstand the voltage involved. - (B) The test voltage shall be applied continuously for 3 minutes for equipment other than matting and shall be applied continuously for 1 minute for matting. - (C) Gloves shall also be capable of separately withstanding the ac proof-test voltage specified in Table E-1 after a 16-hour water soak. (See the note following paragraph (a)(3)(ii)(B) of this section.) - (ii) When the ac proof test is used on gloves, the 60-hertz proof-test current may not exceed the values specified in Table E-1 at any time during the test period. - (A) If the ac proof test is made at a frequency other than 60 hertz, the permissible proof-test current shall be computed from the direct ratio of the frequencies. - (B) For the test, gloves (right side out) shall be filled with tap water and immersed in water to a depth that is in accordance with Table E-3. Water shall be added to or removed from the glove, as necessary, so that the water level is the same inside and outside the glove. - (C) After the 16-hour water soak specified in paragraph (a)(2)(i)(C) of this section, the 60-hertz proof-test current may not exceed the values given in Table E-1 by more than 2 milliamperes. - (iii) Equipment that has been subjected to a minimum breakdown voltage test may not be used for electrical protection. (See the note following paragraph (a)(3)(ii)(B) of this section.) - (iv) Material used for Type II insulating equipment shall be capable of withstanding an ozone test, with no visible effects. The ozone test shall reliably indicate that the material will resist ozone exposure in actual use. Any visible signs of ozone deterioration of the material, such as checking, cracking, breaks, or pitting, is evidence of failure to meet the requirements for ozone-resistant material. (See the note following paragraph (a)(3)(ii)(B) of this section.) #### (3) Workmanship and finish. - Equipment shall be free of physical irregularities that can adversely affect the insulating properties of the equipment and that can be detected by the tests or inspections required under this section. - (ii) Surface irregularities that may be present on all rubber goods (because of imperfections on forms or molds or because of inherent difficulties in the manufacturing process) and that may appear as indentations, protuberances, or imbedded foreign material are acceptable under the following conditions: - (A) The indentation or protuberance blends into a smooth slope when the material is stretched. - (B) Foreign material remains in place when the insulating material is folded and stretches with the insulating material surrounding it. Note to paragraph (a): Rubber insulating equipment meeting the following national consensus standards is deemed to be in compliance with the performance requirements of paragraph (a) of this section: American Society for Testing and Materials (ASTM) D120–09, Standard Specification for Rubber Insulating Gloves. ASTM D178-01 (2010), Standard Specification for Rubber Insulating Matting. ASTM D1048–12, Standard Specification for Rubber Insulating Blankets. ASTM D1049-98 (2010), Standard Specification for Rubber Insulating Covers. ASTM D1050-05 (2011), Standard Specification for Rubber Insulating Line Hose. ASTM D1051–08, Standard Specification for Rubber Insulating Sleeves. The preceding standards also contain specifications for conducting the various tests required in paragraph (a) of this section. For example, the ac and dc proof tests, the breakdown test, the water-soak procedure, and the ozone test mentioned in this paragraph are described in detail in these ASTM standards. ASTM F1236–96 (2012), Standard Guide for Visual Inspection of Electrical Protective Rubber Products, presents methods and techniques for the visual inspection of electrical protective equipment made of rubber. This guide also contains descriptions and photographs of irregularities that can be found in this equipment. ASTM F819–10, Standard Terminology Relating to Electrical Protective Equipment for Workers, includes definitions of terms relating to the electrical protective equipment covered under this section. - (b) Design requirements for other types of electrical protective equipment. The following requirements apply to the design and manufacture of electrical protective equipment that is not covered by paragraph (a) of this section: - (1) **Voltage withstand**. Insulating equipment used for the protection of employees shall be capable of withstanding, without failure, the voltages that may be imposed upon it. Note to paragraph (b)(1): These voltages include transient overvoltages, such as switching surges, as well as nominal line voltage. See appendix B to subpart V of this part for a discussion of transient overvoltages on electric power transmission and distribution systems. See IEEE Std 516–2009, *IEEE Guide for Maintenance Methods on Energized Power Lines*, for methods of determining the magnitude of transient overvoltages on an electrical system and for a discussion comparing the ability of insulation equipment to withstand a transient overvoltage based on its ability to withstand ac voltage testing. #### (2) Equipment current. - (i) Protective equipment used for the primary insulation of employees from energized circuit parts shall be capable of passing a current test when subjected to the highest nominal voltage on which the equipment is to be used. - (ii) When insulating equipment is tested in accordance with paragraph (b)(2)(i) of this section, the equipment current may not exceed 1 microampere per kilovolt of phase-to-phase applied voltage. Note 1 to paragraph (b)(2): This paragraph applies to equipment that provides primary insulation of employees from energized parts. It does not apply to equipment used for secondary insulation or equipment used for brush contact only. Note 2 to paragraph (b)(2): For ac excitation, this current consists of three components: Capacitive current because of the dielectric properties of the insulating material itself, conduction current through the volume of the insulating equipment, and leakage current along the surface of the tool or equipment. The conduction current is normally negligible. For clean, dry insulating equipment, the leakage current is small, and the capacitive current predominates. Note to paragraph (b): Plastic guard equipment is deemed to conform to the performance requirements of paragraph (b) of this section if it meets, and is used in accordance with, ASTM F712-06 (2011), Standard Test Methods and Specifications for Electrically Insulating Plastic Guard Equipment for Protection of Workers. - (c) In-service care and use of electrical protective equipment - (1) General. Electrical protective equipment shall be maintained in a safe, reliable condition. - (2) **Specific requirements.** The following specific requirements apply to rubber insulating blankets, rubber insulating covers, rubber insulating line hose, rubber insulating gloves, and rubber insulating sleeves: - (i) Maximum use voltages shall conform to those listed in Table E-4. - (ii) Insulating equipment shall be inspected for damage before each day's use and immediately following any incident that can reasonably be suspected of causing damage. Insulating gloves shall be given an air test, along with the inspection. Note to paragraph (c)(2)(ii): ASTM F1236-96 (2012), Standard Guide for Visual Inspection of Electrical Protective Rubber Products, presents methods and techniques for the visual inspection of electrical protective equipment made of rubber. This guide also contains descriptions and photographs of irregularities that can be found in this equipment. - (iii) Insulating equipment with any of the following defects may not be used: - (A) A hole, tear, puncture, or cut; - (B) Ozone cutting or ozone checking (that is, a series of interlacing cracks produced by ozone on rubber under mechanical stress); - (C) An embedded foreign object; - (D) Any of the following texture changes: Swelling, softening, hardening, or becoming sticky or inelastic. - (E) Any other defect that damages the insulating properties. - (iv) Insulating equipment found to have other defects that might affect its insulating properties shall be removed from service and returned for testing under paragraphs (c)(2)(viii) and (c)(2)(ix) of this section. - (v) Insulating equipment shall be cleaned as needed to remove foreign substances. - (vi) Insulating equipment shall be stored in such a location and in such a manner as to protect it from light, temperature extremes, excessive humidity, ozone, and other damaging substances and conditions. - (vii) Protector gloves shall be worn over insulating gloves, except as follows: - (A) Protector gloves need not be used with Class 0 gloves, under limited-use conditions, when small equipment and parts manipulation necessitate unusually high finger dexterity. Note to paragraph (c)(2)(vii)(A): Persons inspecting rubber insulating gloves used under these conditions need to take extra care in visually examining them. Employees using rubber insulating gloves under these conditions need to take extra care to avoid handling sharp objects. (B) If the voltage does not exceed 250 volts, ac, or 375 volts, dc, protector gloves need not be used with Class 00 gloves, under limited-use conditions, when small equipment and parts manipulation necessitate unusually high finger dexterity. Note to paragraph (c)(2)(vii)(B): Persons inspecting rubber insulating gloves used under these conditions need to take extra care in visually examining them. Employees using rubber insulating gloves under these conditions need to take extra care to avoid handling sharp objects. - (C) Any other class of glove may be used without protector gloves, under limited-use conditions, when small equipment and parts manipulation necessitate unusually high finger dexterity but only if the employer can demonstrate that the possibility of physical damage to the gloves is small and if the class of glove is one class higher than that required for the voltage involved. - (D) Insulating gloves that have been used without protector gloves may not be reused until they have been tested under the provisions of paragraphs (c)(2)(viii) and (c)(2)(ix) of this section. - (viii) Electrical protective equipment shall be subjected to periodic electrical tests. Test voltages and the maximum intervals between tests shall be in accordance with Table E-4 and Table E-5. - (ix) The test method used under paragraphs (c)(2)(viii) and (c)(2)(xi) of this section shall reliably indicate whether the insulating equipment can withstand the voltages involved. Note to paragraph (c)(2)(ix): Standard electrical test methods considered as meeting this paragraph are given in the following national consensus standards: ASTM D120-09, Standard Specification for Rubber Insulating Gloves. ASTM D178-01 (2010), Standard Specification for Rubber Insulating Matting. ASTM D1048–12, Standard Specification for Rubber Insulating Blankets. ASTM D1049–98 (2010), Standard Specification for Rubber Insulating Covers. ASTM D1050-05 (2011), Standard Specification for Rubber Insulating Line Hose. ASTM D1051-08, Standard Specification for Rubber Insulating Sleeves. ASTM F478–09, Standard Specification for In-Service Care of Insulating Line Hose and Covers. ASTM F479-06 (2011), Standard Specification for In-Service Care of Insulating Blankets. ASTM F496–08, Standard Specification for In-Service Care of Insulating Gloves and Sleeves. - (x) Insulating equipment failing to pass inspections or electrical tests may not be used by employees, except as follows: - (A) Rubber insulating line hose may be used in shorter lengths with the defective portion cut off. - (B) Rubber insulating blankets may be salvaged by severing the defective area from the undamaged portion of the blanket. The resulting undamaged area may not be smaller than 560 millimeters by 560 millimeters (22 inches by 22 inches) for Class 1, 2, 3, and 4 blankets. - (C) Rubber insulating blankets may be repaired using a compatible patch that results in physical and electrical properties equal to those of the blanket. - (D) Rubber insulating gloves and sleeves with minor physical defects, such as small cuts, tears, or punctures, may be repaired by the application of a compatible patch. Also, rubber insulating gloves and sleeves with minor surface blemishes may be repaired with a compatible liquid compound. The repaired area shall have electrical and physical properties equal to those of the surrounding material. Repairs to gloves are permitted only in the area between the wrist and the reinforced edge of the opening. - (xi) Repaired insulating equipment shall be retested before it may be used by employees. (xii) The employer shall certify that equipment has been tested in accordance with the requirements of paragraphs (c)(2)(iv), (c)(2)(vii)(D), (c)(2)(viii), (c)(2)(ix), and (c)(2)(xi) of this section. The certification shall identify the equipment that passed the test and the date it was tested and shall be made available upon request to the Assistant Secretary for Occupational Safety and Health and to employees or their authorized representatives. Note to paragraph (c)(2)(xii): Marking equipment with, and entering onto logs, the results of the tests and the dates of testing are two acceptable means of meeting the certification requirement. Table E-1-AC Proof-Test Requirements | | Proof-test
voltage
rms V | Maximum proof-test current, mA
(gloves only) | | | | |--------------------|--------------------------------|---|----------------------------|----------------------------|----------------------------| | Class of equipment | | 280-mm
(11-in)
glove | 360-mm
(14-in)
glove | 410-mm
(16-in)
glove | 460-mm
(18-in)
glove | | 00 | 2,500 | 8 | 12 | | | | 0 | 5,000 | 8 | 12 | 14 | 16 | | 1 | 10,000 | | 14 | 16 | 18 | | 2 | 20,000 | | 16 | 18 | 20 | | 3 | 30,000 | | 18 | 20 | 22 | | 4 | 40,000 | | | 22 | 24 | Table E-2-DC Proof-Test Requirements | Class of equipment | Proof-test voltage | |--------------------|--------------------| | 00 | 10,000 | | 0 | 20,000 | | 1 | 40,000 | | 2 | 50,000 | | 3 | 60,000 | | 4 | 70,000 | Note: The dc voltages listed in this table are not appropriate for proof testing rubber insulating line hose or covers. For this equipment, dc proof tests shall use a voltage high enough to indicate that the equipment can be safely used at the voltages listed in Table E-4. See ASTM D1050-05 (2011) and ASTM D1049-98 (2010) for further information on proof tests for rubber insulating line hose and covers, respectively. Table E-3-Glove Tests-Water Level 12 | Close of alove | AC proo | f test | DC proof test | | |----------------|---------|--------|---------------|-----| | Class of glove | mm | in | mm | in | | 00 | 38 | 1.5 | 38 | 1.5 | | 0 | 38 | 1.5 | 38 | 1.5 | | 1 | 38 | 1.5 | 51 | 2.0 | | 2 | 64 | 2.5 | 76 | 3.0 | | 3 | 89 | 3.5 | 102 | 4.0 | | 4 | 127 | 5.0 | 153 | 6.0 | $^{^{1}}$ The water level is given as the clearance from the reinforced edge of the glove to the water line, with a tolerance of ± 13 mm. (± 0.5 in.). Table E-4—Rubber Insulating Equipment, Voltage Requirements | Class of equipment | Maximum use voltage ¹ AC rms | Retest
voltage ²
AC rms | Retest
voltage ²
DC avg | |--------------------|---|--|--| | 00 | 500 | 2,500 | 10,000 | | 0 | 1,000 | 5,000 | 20,000 | | 1 | 7,500 | 10,000 | 40,000 | | 2 | 17,000 | 20,000 | 50,000 | | 3 | 26,500 | 30,000 | 60,000 | | 4 | 36,000 | 40,000 | 70,000 | ¹ The maximum use voltage is the ac voltage (rms) classification of the protective equipment that designates the maximum nominal design voltage of the energized system that may be safely worked. The nominal design voltage is equal to the phase-to-phase voltage on multiphase circuits. However, the phase-to-ground potential is considered to be the nominal design voltage if: - (1) There is no multiphase exposure in a system area and the voltage exposure is limited to the phase-to-ground potential, or - (2) The electric equipment and devices are insulated or isolated or both so that the multiphase exposure on a grounded wye circuit is removed. ² If atmospheric conditions make the specified clearances impractical, the clearances may be increased by a maximum of 25 mm. (1 in.). ² The proof-test voltage shall be applied continuously for at least 1 minute, but no more than 3 minutes. Table E-5—Rubber Insulating Equipment, Test Intervals | Type of equipment | When to test | | | |-----------------------------------|---|--|--| | Rubber
insulating line
hose | Upon indication that insulating value is suspect and after repair. | | | | Rubber insulating covers | Upon indication that insulating value is suspect and after repair. | | | | Rubber
insulating
blankets | Before first issue and every 12 months thereafter; upon indication that insulating value is suspect; and after repair. | | | | Rubber insulating gloves | Before first issue and every 6 months thereafter; upon indication that insulating value is suspect; after repair; and after use without protectors. | | | | Rubber
insulating
sleeves | Before first issue and every 12 months thereafter; upon indication that insulating value is suspect; and after repair. | | | ¹ If the insulating equipment has been electrically tested but not issued for service, the insulating equipment may not be placed into service unless it has been electrically tested within the previous 12 months. [79 FR 20693, Apr. 11, 2014] ## § 1926.98 [Reserved] ## § 1926.100 Head protection. - (a) Employees working in areas where there is a possible danger of head injury from impact, or from falling or flying objects, or from electrical shock and burns, shall be protected by protective helmets. - (b) Criteria for head protection. - (1) The employer must provide each employee with head protection that meets the specifications contained in any of the following consensus standards: - (i) American National Standards Institute (ANSI) Z89.1–2009, "American National Standard for Industrial Head Protection," incorporated by reference in § 1926.6; - (ii) American National Standards Institute (ANSI) Z89.1–2003, "American National Standard for Industrial Head Protection," incorporated by reference in § 1926.6; or - (iii) American National Standards Institute (ANSI) Z89.1–1997, "American National Standard for Personnel Protection—Protective Headwear for Industrial Workers—Requirements," incorporated by reference in § 1926.6. - (2) The employer must ensure that the head protection provided for each employee exposed to high-voltage electric shock and burns also meets the specifications contained in Section 9.7 ("Electrical Insulation") of any of the consensus standards identified in paragraph (b)(1) of this section. - (3) OSHA will deem any head protection device that the employer demonstrates is at least as effective as a head protection device constructed in accordance with one of the consensus standards identified in paragraph (b)(1) of this section to be in compliance with the requirements of this section. [44 FR 8577, Feb. 9, 1979, as amended at 77 FR 37600, June 22, 2012; 77 FR 42988, July 23, 2012] ## § 1926.101 Hearing protection. - (a) Wherever it is not feasible to reduce the noise levels or duration of exposures to those specified in Table D-2, Permissible Noise Exposures, in § 1926.52, ear protective devices shall be provided and used. - (b) Ear protective devices inserted in the ear shall be fitted or determined individually by competent persons. - (c) Plain cotton is not an acceptable protective device. ## § 1926.102 Eye and face protection. - (a) General. - (1) The employer shall ensure that each affected employee uses appropriate eye or face protection when exposed to eye or face hazards from flying particles, molten metal, liquid chemicals, acids or caustic liquids, chemical gases or vapors, or potentially injurious light radiation. - (2) The employer shall ensure that each affected employee uses eye protection that provides side protection when there is a hazard from flying objects. Detachable side protectors (e.g. clip-on or slide-on side shields) meeting the pertinent requirements of this section are acceptable. - (3) The employer shall ensure that each affected employee who wears prescription lenses while engaged in operations that involve eye hazards wears eye protection that incorporates the prescription in its design, or wears eye protection that can be worn over the prescription lenses without disturbing the proper position of the prescription lenses or the protective lenses. - (4) Eye and face PPE shall be distinctly marked to facilitate identification of the manufacturer. - (5) Protectors shall meet the following minimum requirements: - (i) They shall provide adequate protection against the particular hazards for which they are designed. - (ii) They shall be reasonably comfortable when worn under the designated conditions. - (iii) They shall fit snugly and shall not unduly interfere with the movements of the wearer. - (iv) They shall be durable. - (v) They shall be capable of being disinfected. - (vi) They shall be easily cleanable. - (b) Criteria for protective eye and face protection. - (1) Protective eye and face protection devices must comply with any of the following consensus standards: - (i) ANSI/ISEA Z87.1–2010, Occupational and Educational Personal Eye and Face Protection Devices, incorporated by reference in § 1926.6; - (ii) ANSI Z87.1–2003, Occupational and Educational Personal Eye and Face Protection Devices, incorporated by reference in § 1926.6; or - (iii) ANSI Z87.1–1989 (R–1998), Practice for Occupational and Educational Eye and Face Protection, incorporated by reference in § 1926.6; - (2) Protective eye and face protection devices that the employer demonstrates are at least as effective as protective eye and face protection devices that are constructed in accordance with one of the above consensus standards will be deemed to be in compliance with the requirements of this section. #### (c) Protection against radiant energy — (1) Selection of shade numbers for welding filter. Table E-1 shall be used as a guide for the selection of the proper shade numbers of filter lenses or plates used in welding. Shades more dense than those listed may be used to suit the individual's needs. Table E-1-Filter Lens Shade Numbers for Protection Against Radiant Energy | Welding operation | Shade number | |---|--------------| | Shielded metal-arc welding 1/16-, 3/32-, 1/8-, 5/32-inch diameter electrodes | 10 | | Gas-shielded arc welding (nonferrous) 1/16-, 3/32-, 1/8-, 5/32-inch diameter electrodes | 11 | | Gas-shielded arc welding (ferrous) 1/16-, 3/32-, 1/8-, 5/32-inch diameter electrodes | 12 | | Shielded metal-arc welding 3/16-, 7/32-, 1/4-inch diameter electrodes | 12 | | 5/16-, 3/8-inch diameter electrodes | 14 | | Atomic hydrogen welding | 10-14 | | Carbon-arc welding | 14 | | Soldering | 2 | | Torch brazing | 3 or 4 | | Light cutting, up to 1 inch | 3 or 4 | | Medium cutting, 1 inch to 6 inches | 4 or 5 | | Heavy cutting, over 6 inches | 5 or 6 | | Gas welding (light), up to 1/8-inch | 4 or 5 | | Gas welding (medium), 1/8-inch to 1/2-inch | 5 or 6 | | Gas welding (heavy), over 1/2-inch | 6 or 8 | #### (2) Laser protection. (i) Employees whose occupation or assignment requires exposure to laser beams shall be furnished suitable laser safety goggles which will protect for the specific wavelength of the laser and be of optical density (O.D.) adequate for the energy involved. Table E-2 lists the maximum power or energy density for which adequate protection is afforded by glasses of optical densities from 5 through 8. Output levels falling between lines in this table shall require the higher optical density. Table E-2—Selecting Laser Safety Glass | Intensity CW maximum navor density (watta/am²) | Attenuation | | | |--|------------------------|--------------------|--| | Intensity, CW maximum power density (watts/cm ²) | Optical density (O.D.) | Attenuation factor | | | 10 ⁻² | 5 | 10 ⁵ | | | 10 ⁻¹ | 6 | 10 ⁶ | | | 1.0 | 7 | 10 ⁷ | | | 10.0 | 8 | 10 ⁸ | | - (ii) All protective goggles shall bear a label identifying the following data: - (A) The laser wavelengths for which use is intended; - (B) The optical density of those wavelengths; - (C) The visible light transmission. [44 FR 8577, Feb. 9, 1979; 44 FR 20940, Apr. 6, 1979, as amended at 58 FR 35160, June 30, 1993; 81 FR 16092, Mar. 25, 2016] ## § 1926.103 Respiratory protection. Note: The requirements applicable to construction work under this section are identical to those set forth at 29 CFR 1910.134 of this chapter. [63 FR 1297; Jan. 8, 1998] ## § 1926.104 Safety belts, lifelines, and lanyards. - (a) Lifelines, safety belts, and lanyards shall be used only for employee safeguarding. Any lifeline, safety belt, or lanyard actually subjected to in-service loading, as distinguished from static load testing, shall be immediately removed from service and shall not be used again for employee safeguarding. - (b) Lifelines shall be secured above the point of operation to an anchorage or structural member capable of supporting a minimum dead weight of 5,400 pounds. - (c) Lifelines used on rock-scaling operations, or in areas where the lifeline may be subjected to cutting or abrasion, shall be a minimum of ⁷/₈-inch wire core manila rope. For all other lifeline applications, a minimum of ³/₄-inch manila or equivalent, with a minimum breaking strength of 5,000 pounds, shall be used. - (d) Safety belt lanyard shall be a minimum of 1/2-inch nylon, or equivalent, with a maximum length to provide for a fall of no greater than 6 feet. The rope shall have a nominal breaking strength of 5,400 pounds. - (e) All safety belt and lanyard hardware shall be drop forged or pressed steel, cadmium plated in accordance with type 1, Class B plating specified in Federal Specification QQ-P-416. Surface shall be smooth and free of sharp edges. - (f) All safety belt and lanyard hardware, except rivets, shall be capable of withstanding a tensile loading of 4,000 pounds without cracking, breaking, or taking a permanent deformation. [44 FR 8577, Feb. 9, 1979; 44 FR 20940, Apr. 6, 1979, as amended at 84 FR 21577, May 14, 2019] ## § 1926.105 Safety nets. - (a) Safety nets shall be provided when workplaces are more than 25 feet above the ground or water surface, or other surfaces where the use of ladders, scaffolds, catch platforms, temporary floors, safety lines, or safety belts is impractical. - (b) Where safety net protection is required by this part, operations shall not be undertaken until the net is in place and has been tested. (c) - (1) Nets shall extend 8 feet beyond the edge of the work surface where employees are exposed and shall be installed as close under the work surface as practical but in no case more than 25 feet below such work surface. Nets shall be hung with sufficient clearance to prevent user's contact with the surfaces or structures below. Such clearances shall be determined by impact load testing. - (2) It is intended that only one level of nets be required for bridge construction. - (d) The mesh size of nets shall not exceed 6 inches by 6 inches. All new nets shall meet accepted performance standards of 17,500 foot-pounds minimum impact resistance as determined and certified by the manufacturers, and shall bear a label of proof test. Edge ropes shall provide a minimum breaking strength of 5,000 pounds. - (e) Forged steel safety hooks or shackles shall be used to fasten the net to its supports. - (f) Connections between net panels shall develop the full strength of the net. ## § 1926.106 Working over or near water. - (a) Employees working over or near water, where the danger of drowning exists, shall be provided with U.S. Coast Guard-approved life jacket or buoyant work vests. - (b) Prior to and after each use, the buoyant work vests or life preservers shall be inspected for defects which would alter their strength or buoyancy. Defective units shall not be used. - (c) Ring buoys with at least 90 feet of line shall be provided and readily available for emergency rescue operations. Distance between ring buoys shall not exceed 200 feet. - (d) At least one lifesaving skiff shall be immediately available at locations where employees are working over or adjacent to water. ## § 1926.107 Definitions applicable to this subpart. (a) **Contaminant** means any material which by reason of its action upon, within, or to a person is likely to cause physical harm. - (b) Lanyard means a rope, suitable for supporting one person. One end is fastened to a safety belt or harness and the other end is secured to a substantial object or a safety line. - (c) Lifeline means a rope, suitable for supporting one person, to which a lanyard or safety belt (or harness) is attached. - (d) **O.D.** means optical density and refers to the light refractive characteristics of a lens. - (e) Radiant energy means energy that travels outward in all directions from its sources. - (f) Safety belt means a device, usually worn around the waist which, by reason of its attachment to a lanyard and lifeline or a structure, will prevent a worker from falling. [44 FR 8577, Feb. 9, 1979]